Optimization

Linear Regression

Conclusion

Linear Algebra, Optimization, and Linear Regression

Dana Golden, Lilia Maliar

Data Science and Machine Learning - November 30, 2024

Optimization

Linear Regression

Conclusion

Presentation Outline

- 1 Introduction and Background
- 2 Review of Linear Algebra
- **3** Optimization
- **4** Linear Regression
- **5** Conclusion

Optimization

Linear Regression

Conclusion

Why linear algebra is important?

- Linear algebra is at the heart of machine learning
- Many advanced linear algebra techniques are important to machine learning algorithms
- Matrices are how computers make sense of data

Optimization

Linear Regression

Conclusion

Why optimization is important?

- Most machine learning frameworks focus on optimization
- As economists, we often want to view algorithms through the lens of optimization

Conclusion

Why re-introduce linear regression?

- Machine learning view on linear regression focuses on optimization
- Linear regression is a common framework in econometrics and provides a lens through which to see machine learning
- Most undergrad econometric classes don't focus on matrix algebra

Optimization

Linear Regression

Conclusion

Matrix Multiplication

Data Science and Machine Learning

Optimization

Linear Regression

Conclusion

Linear Independence

• A set of vectors $\{v_i\}_{i=1}^n$ is linearly independent if the vector equation $x_1v_1...x_nv_n = 0$ has only the trivial solution x=0

Optimization

Linear Regression

Conclusion

(1)

Linear Independence Example

- Are the following vectors linearly independent?
 - $\begin{bmatrix} 2 & -4 & 1 \\ 2 & 6 & 0 \\ 1 & 5 & 0 \end{bmatrix}$

Optimization

Linear Regression

Conclusion

(1)

(2)

Linear Independence Example

• Are the following vectors linearly independent?

ſ	2	-4	1]
	2	6	0
	1	5	0
	2	15	3]
	5	7	9
	4	30	6

Introduction	and	Background

Optimization

Linear Regression

Conclusion

Rank

- A matrix's rank is the number of linearly independent rows
- The rank of a matrix can be found by row-reducing and finding number of pivot points
- Only matrices of full rank are invertible. Why is this important?

$$\begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{bmatrix} \xrightarrow{2R_1 + R_2 \to R_2} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 3 & 5 & 0 \end{bmatrix} \xrightarrow{-3R_1 + R_3 \to R_3} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 0 & -1 & -3 \end{bmatrix}$$
$$\xrightarrow{R_2 + R_3 \to R_3} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{-2R_2 + R_1 \to R_1} \begin{bmatrix} 1 & 0 & -5 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}.$$

Optimization

Linear Regression

Conclusion

Inverse Definition

- A square matrix's inverse is the matrix that when multiplied by the matrix is the identity
- While most matrix multiplication is not communitive, inverse multiplication is
- Singular matrices have no inverse

$$AA^{-1} = A^{-1}A = I (3)$$

Optimization

Linear Regression

Conclusion

Finding an Inverse

- Method 1: Augment matrix with identity matrix, and row reduce original matrix while applying steps to augmented matrix
- Method 2: Multiple inverse of absolute value of determinant by adjoint matrix

$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} \begin{vmatrix} a_{13} & a_{12} \\ a_{33} & a_{32} \end{vmatrix} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}$$
$$\begin{vmatrix} a_{23} & a_{21} \\ a_{33} & a_{31} \end{vmatrix} \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} \begin{vmatrix} a_{13} & a_{11} \\ a_{23} & a_{21} \end{vmatrix}$$
$$\begin{vmatrix} a_{21} & a_{22} \\ a_{21} & a_{22} \end{vmatrix} \begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{21} \end{vmatrix}$$

Review of Linear Algebra

Optimization

Linear Regression

Conclusion

Usefulness of Inverses

- Matrix inverses can be used to solve systems of equations
- Crucial for econometrics and specific machine learning tasks

Optimization

Linear Regression

Conclusion

Determinants

Determinants have four properties:

- The determinant of the identity matrix is 1
- Exchange of two rows multiplies determinant by -1
- Multiplying a row by a number multiplies the determinant by this number
- Adding to a row a multiple of another row does not change the determinant

Optimization

Linear Regression

Conclusion

Eigenvalues and Eigenvectors

• Eigenvectors are vectors that when multiplied by a matrix produce themselves times a constant

Α

- The constant is the eigenvalue
- Eigendecomposition is incredibly useful for PCA

$$\vec{v} = \vec{v}$$
 (4)

Review of Linear Algebra

Optimization

Linear Regression

Conclusion

Projection

Data Science and Machine Learning

Э

Э

Review of Linear Algebra

Optimization

Linear Regression

Conclusion

Spaces

• a vector is said to be in space V if for scalar c, $c\vec{a} \in V$ and for $\vec{a} \in V$ and $\vec{b} \in V$, $\vec{a} + \vec{b} \in V$

Introduction	and	Background

Optimization

Linear Regression

Conclusion

Norms

- Norms have three properties
 - Subadditivity: $p(x + y) \le p(x) + p(y) \forall x, y \in X$
 - Absolute homogeneity: p(sx) = |s|p(x)
 - Positive definiteness: $p(x) = 0 \Leftrightarrow x = 0$
- Why are these useful? What might a function that is a norm look like?

Introduction	and	Background

Optimization

Linear Regression

Conclusion

Norms

- Norms have three properties
 - Subadditivity: $p(x + y) \le p(x) + p(y) \forall x, y \in X$
 - Absolute homogeneity: p(sx) = |s|p(x)
 - Positive definiteness: $p(x) = 0 \Leftrightarrow x = 0$
- Why are these useful? What might a function that is a norm look like?
- Euclidean Norm: $||x||_2 = \sqrt{x_1^2 + ... + x_n^2}$
- Taxicab Norm: $||x||_1 = \sum_{i=1}^n |x_i|$
- P-norm $||x||_p = {\binom{n}{i=1}|x_i|^p}^{\frac{1}{p}}$

Optimization

Linear Regression

Conclusion

Analytic Optimization

- Analytic optimization is the most well known to economists
- It involves finding the maximum of a convex function
- Analytic optimization can only be done for functions with analytic maximums

Review of Linear Algebra

Optimization

Linear Regression

Conclusion

Gradient Descent

Understanding Gradient Descent

Optimization

Linear Regression

Conclusion

Stochastic Gradient Descent

• Take gradient for random observation *i* and take step in that direction

$$\theta' = \theta - \alpha \nabla f_i(\theta) \tag{5}$$

Review of Linear Algebra

Optimization ○○○● Linear Regression

 $\underset{\bigcirc \bigcirc}{\text{Conclusion}}$

(6)

Newton's Method

$$heta' = heta - rac{f'(heta)}{f''(heta)}$$

Data Science and Machine Learning

Optimization

Linear Regression

Conclusion

Deriving Least Squares with Matrix

$$y = \beta X + u \tag{7}$$

$$\min_{\beta} \Sigma_{t=1}^{T} [y_t - \Sigma_{i=1}^{n} \beta_1 x_{ti}]^2$$

$$\min_{\beta} \Sigma_{i=1}^{N} [y - X\beta]^2$$

(9)

(8)

Optimization

Linear Regression

Conclusion

Deriving Least Squares with Matrix

$$y = \beta X + u \tag{7}$$

$$\min_{\beta} \sum_{t=1}^{T} [y_t - \sum_{i=1}^{n} \beta_1 x_{ti}]^2 \tag{8}$$

$$\min_{\beta} \sum_{i=1}^{N} [y - X\beta]^2 \tag{9}$$

• Take the matrix derivative

$$\mathsf{X}'(y - X\hat{\beta}) = 0 \tag{10}$$

Optimization

Linear Regression ●○○○○○○○○○ Conclusion

Deriving Least Squares with Matrix

$$y = \beta X + u \tag{7}$$

$$\min_{\beta} \sum_{t=1}^{T} [y_t - \sum_{i=1}^{n} \beta_1 x_{ti}]^2 \tag{8}$$

$$\min_{\beta} \sum_{i=1}^{N} [y - X\beta]^2 \tag{9}$$

• Take the matrix derivative

$$X'(y - X\hat{\beta}) = 0 \tag{10}$$

$$X'y - X'X\hat{\beta} = 0 \tag{11}$$

$$X'y = X'X\hat{\beta} = 0 \tag{12}$$

$$\hat{\beta} = (X'X)^{-1}(X'y) \tag{13}$$

Data Science and Machine Learning

Review of Linear Algebra

Optimization

Linear Regression

Conclusion

Least Squares Asymptotics

$$E(\hat{\beta}) = (X'X)^{-1}(X'y) =$$
 (14)

$$(X'X)^{-1}(X'(X\beta + u)) =$$
(15)

$$(X'X)^{-1}X'X\beta + (X'X)^{-1}X'u =$$
(16)

$$\beta + (X'X)^{-1}X'u \tag{17}$$

• $(X'X)^{-1}X'u$ asymptotically goes to zero. Why?

Data Science and Machine Learning

Golden, Maliar 21/30

Review of Linear Algebra

Optimization

Linear Regression

 $\underset{\bigcirc \bigcirc}{\text{Conclusion}}$

Least Squares Asymptotics

$$E(\hat{\beta}) = (X'X)^{-1}(X'y) =$$
 (14)

$$(X'X)^{-1}(X'(X\beta + u)) =$$
(15)

$$(X'X)^{-1}X'X\beta + (X'X)^{-1}X'u =$$
(16)

$$\beta + (X'X)^{-1}X'u \tag{17}$$

•
$$(X'X)^{-1}X'u$$
 asymptotically goes to zero. Why?
 $E(\hat{\beta}) = \beta$ (18)

Review of Linear Algebra

Optimization

Linear Regression

Conclusion

Least Squares Standard Error

$$D(\hat{\beta}) = E(\hat{\beta} - E\hat{\beta})(\hat{\beta} - E\hat{\beta})' =$$
(19)

Data Science and Machine Learning

Review of Linear Algebra

Optimization

Linear Regression

Conclusion

Least Squares Standard Error

$$D(\hat{\beta}) = E(\hat{\beta} - E\hat{\beta})(\hat{\beta} - E\hat{\beta})' =$$
(19)

$$E(\hat{\beta} - E\hat{\beta})(\hat{\beta} - E\hat{\beta}) =$$
(20)

Review of Linear Algebra

Optimization

Linear Regression

Conclusion

Least Squares Standard Error

1

$$D(\hat{\beta}) = E(\hat{\beta} - E\hat{\beta})(\hat{\beta} - E\hat{\beta})' =$$
(19)

$$E(\hat{\beta} - E\hat{\beta})(\hat{\beta} - E\hat{\beta}) =$$
(20)

$$E((X'X)^{-1}X'uu'X(X'X)^{-1}) =$$
(21)

Review of Linear Algebra

Optimization

Linear Regression

Conclusion

Least Squares Standard Error

1

$$D(\hat{\beta}) = E(\hat{\beta} - E\hat{\beta})(\hat{\beta} - E\hat{\beta})' =$$
(19)

$$E(\hat{\beta} - E\hat{\beta})(\hat{\beta} - E\hat{\beta}) =$$
(20)

$$E((X'X)^{-1}X'uu'X(X'X)^{-1}) =$$
(21)

$$(X'X)^{-1}X'E(uu')X(X'X)^{-1} =$$
(22)

Review of Linear Algebra

Optimization

Linear Regression

Conclusion

Least Squares Standard Error

1

$$D(\hat{\beta}) = E(\hat{\beta} - E\hat{\beta})(\hat{\beta} - E\hat{\beta})' =$$
(19)

$$E(\hat{\beta} - E\hat{\beta})(\hat{\beta} - E\hat{\beta}) =$$
(20)

$$E((X'X)^{-1}X'uu'X(X'X)^{-1}) =$$
(21)

$$(X'X)^{-1}X'E(uu')X(X'X)^{-1} =$$
(22)

$$(X'X)^{-1}X'\sigma^2X(X'X)^{-1}$$
(23)

Review of Linear Algebra

Optimization

Linear Regression

Conclusion

Least Squares Standard Error

1

$$D(\hat{\beta}) = E(\hat{\beta} - E\hat{\beta})(\hat{\beta} - E\hat{\beta})' =$$
(19)

$$E(\hat{\beta} - E\hat{\beta})(\hat{\beta} - E\hat{\beta}) =$$
(20)

$$E((X'X)^{-1}X'uu'X(X'X)^{-1}) =$$
(21)

$$(X'X)^{-1}X'E(uu')X(X'X)^{-1} =$$
(22)

$$(X'X)^{-1}X'\sigma^2X(X'X)^{-1}$$
 (23)

$$\sigma^{2}(X'X)^{-1}X'X(X'X)^{-1} = \sigma^{2}(X'X)^{-1}$$
(24)

$$Var\hat{\beta}_i = \sigma^2 (X'X)_{ii}^{-1} \tag{25}$$

Data Science and Machine Learning

Conclusion

Assumptions and Violations of Least Squares Asymptotics

• What happens if the x-values are correlated with the error term?

Assumptions and Violations of Least Squares Asymptotics

• What happens if the x-values are correlated with the error term? $E(\hat{\beta}) = (X'X)^{-1}X'X\beta + (X'X)^{-1}X'u = (26)$ $\beta + (X'X)^{-1}X'u \neq \beta (27)$

Assumptions and Violations of Least Squares Asymptotics

• What happens if the x-values are correlated with the error term? $E(\hat{\beta}) = (X'X)^{-1}X'X\beta + (X'X)^{-1}X'u = (26)$ $\beta + (X'X)^{-1}X'u \neq \beta (27)$

• What happens if the y values are correlated with the error term?

Optimization

Linear Regression

Conclusion

Derivation of Maximum Likelihood Estimator of Least Squares

$$y_t = X_t \beta + u_t, u_t \sim iidN(0, \sigma^2)$$
(28)

$$L(y|\beta,\sigma) =_{t=1}^{T} \frac{1}{\sqrt{2\pi\sigma}} exp\{\frac{-1}{2\sigma}(y-X_t\beta)^2\}$$
(29)

$$ln(L(y|\beta,\sigma)) = \sum_{t=1}^{T} \frac{-1}{2} ln(2\pi) - ln(\sigma) - \frac{1}{2\sigma} (y_t - X_t \beta)^2$$
(30)

• This is maximized by minimizing the sum of squared errors

Optimization

Linear Regression

Conclusion

Algorithm for Solving Least Squares using Maximum Likelihood

- Start with cost function
- Minimize
- How to find standard error?

Optimization

Linear Regression

Conclusion

Algorithm for Solving Least Squares using Maximum Likelihood

- Start with cost function
- Minimize
- How to find standard error?
- Hessian matrix/ Information matrix
- Monte Carlo

Optimization

Linear Regression

Conclusion

Cost Functions

- A function you attempt to minimize within the machine learning context
- A way to measure how well your algorithm is performed
- Example: MSE, log loss
- Generally make log loss negative. Why?

Review of Linear Algebra

Optimization

Linear Regression

Conclusion

LASSO

- L1 Norm
- Used to choose variables and prevent overfitting
- Sets value of some coefficients to zero

$$\min_{\beta_{0},\beta_{1}} \{ \sum_{i=1}^{N} (y_{i} - \beta_{0} - x_{i}^{T}\beta)^{2} \} s.t. \sum_{j=1}^{p} |\beta_{j}| \le t$$
(31)

Review of Linear Algebra

Optimization

Linear Regression

Conclusion

Ridge

- L2 norm
- Scales all coefficients based on their value for prediction
- Can perform regression even when colinearity exists

$$min\sum_{i=1}^{N} (y_i - \beta_0 - x_i^{\mathsf{T}}\beta)^2 \} s.t.\lambda \sum_{j=1}^{P} |\beta_j^2| \le t$$

(32)

Optimization

Linear Regression

Conclusion

Elastic Net

- Elastic Net uses penalties on both the L_1 and L_2 norm
- Compromise between Lasso and Ridge

 $\min \sum_{i=1}^{N} (y_i - \beta_0 - x_i^{\mathsf{T}} \beta)^2 \} s.t. \lambda_2 ||\beta||^2 \le t_1, \lambda_1 ||\beta_1|| \le t_2$ (33)

Review of Linear Algebra

Optimization

Linear Regression

Conclusion

Э

30 / 30

Golden. Maliar

Visualization

Elastic net-Diagrammatic Representation

Data Science and Machine Learning

Optimization

Linear Regression

Conclusion ●○

Thank You So Much!

Data Science and Machine Learning

Golden, Maliar 30 / 30

< P

Introduction	and	Background

Optimization

Linear Regression

Conclusion ○●

Sources

Э

く目

< D